Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jens K. Bjernemose and Christine J. McKenzie*

Department of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

Correspondence e-mail: chk@chem.sdu.dk

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.051$
$w R$ factor $=0.138$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2,6-Bis[bis(pyridin-2-ylmethyl)aminomethyl]-4-tert-butylphenol

The title compound (Hbpbp), $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}$, is a phenol with one intramolecular bifurcated hydrogen bond. This result furnishes an explanation as to why the otherwise symmetric deprotonated ligand shows a propensity for forming asymmetric, e.g. heterovalent and heterometallic, coordination compounds.

Comment

We have used the phenolate-hinged dinucleating ligand bpbpfor the synthesis of dimetallic coordination compounds and have succeeded in crystallizing the parent phenol, Hbpbp, (I). This, together with the dichloride diperchlorate double salt of tetraprotonated $\mathrm{H}_{5} \mathrm{bpbp}^{4+}$ (Gomes et al., 2000), has given us further insight into the mechanism of the ligand coordination.

The conformation of (I) (Fig. 1) is dominated by an intramolecular bifurcated hydrogen bond from the phenol $\mathrm{O} 1-\mathrm{H} 1$ group to $\mathrm{N} 2[2.11$ (2) Å] of one arm and N221 [2.43 (2) Å] of one pyridine of that same arm. The angles around H 1 sum to $255(3)^{\circ}$. This hydrogen bond gives a $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 20-\mathrm{N} 2$ torsion angle of $-47.7(3)^{\circ}$ (syn). The $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 60-\mathrm{N} 6$ torsion angle, on the other hand, is 174.48 (17) ${ }^{\circ}$ (anti). This can be explained by a $2.53 \AA$ hydrogen bond from C5-H5 of the phenol ring to N6 of the other ligand arm. In addition, atoms H613 and H623 of the attached pyridine rings form similar hydrogen bonds to N6 (2.53 and $2.55 \AA$, respectively). In the previously investigated $\mathrm{H}_{5} \mathrm{bpbp}^{4+}$ cation, these $\mathrm{C}-\mathrm{H}$ donors are replaced by $\mathrm{N}-\mathrm{H}$ donors from the protonated pyridines. As a result, both amines are oriented syn with respect to the $\mathrm{O}-\mathrm{H}$ group.

The molecular packing is dominated by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ [shortest contacts $2.61 \AA$ for $\mathrm{H} 8 a \cdots \mathrm{~N} 621^{\mathrm{i}}$ and H626 $\cdots \mathrm{N} 611^{\mathrm{ii}}$; symmetry codes: (i): $1+x, y, 1+z$; (ii) $x, y,-1+z]$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ bonding interactions [shortest contacts are to the central phenol ring (centroid $=P C$): $\mathrm{H} 216 \cdots \mathrm{PC}^{\mathrm{iii}}=2.85 \AA$ and $\mathrm{H} 224 \cdots \mathrm{PC}^{\mathrm{iv}}$; symmetry codes: (iii) $-\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iv) $\left.\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z\right]$.

Received 24 June 2003
Accepted 24 July 2003
Online 8 August 2003

We propose that the asymmetry between the bis(pyridin-2ylmethyl)aminomethyl arms, one hydrogen-bonded, one dangling, can account for the observed asymmetric coordination chemistry of the bpbp- ligand (Ghiladi et al., 1997, 1999). A stepwise insertion of two metal ions seems likely, because the dangling arm is more available for coordination.

Experimental

Compound (I) was synthesized according to a published procedure (Ghiladi et al., 1997). The raw product was subjected to column chromatography with acetone as eluent. Prismatic crystals suitable for diffraction were formed by subsequent recrystallization from acetone.

Crystal data

$\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}$
$M_{r}=572.74$
Monoclinic, $P 2_{1} / n$
$a=9.892$ (5) \AA
$b=31.185$ (5) \AA
$c=10.524$ (5) \AA
$\beta=102.188(5)^{\circ}$
$V=3173$ (2) \AA^{3}
$Z=4$
$D_{x}=1.199 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 16912 reflections
$\theta=3.7-24.7^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=180$ (2) K
Prism, colourless
$0.48 \times 0.35 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART CCD

diffractometer
Narrow-frame φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.753, T_{\text {max }}=0.989$
16542 measured reflections

Refinement

Refinement on F^{2}
5388 independent reflections
3501 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=24.7^{\circ}$
$h=-11 \rightarrow 11$
$k=-36 \rightarrow 27$
$l=-12 \rightarrow 12$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0705 P)^{2}\right.$
$w R\left(F^{2}\right)=0.138$
$S=1.02$
5388 reflections
392 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 1
View of (I) (50% probability displacement ellipsoids). Only the phenolic H atom is included. The omitted atom numbers are consecutive to those shown.

The remaining ligand H atoms were constrained to ideal positions with $U_{\text {iso }}=1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-Seed (Barbour, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to Dr A. D. Bond for collecting the data at the Danish Technical University.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Ghiladi, M., Jensen, K. H., Jiang, J., McKenzie, C. J., Mørup, S., Søtofte, I. \& Ulstrup, J. (1999). J. Chem. Soc. Dalton Trans. pp. 2675-2681.
Ghiladi, M., McKenzie, C. J., Meier, A., Powell, A. K., Ulstrup, J. \& Wocadlo, S. (1997). J. Chem. Soc. Dalton Trans. pp. 4011-4018.

Gomes, J. T., Hazell, A. \& McKenzie, C. J. (2000). Acta Cryst. C56, 382-383. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

